MATH 141: Midterm 2

Name: \qquad

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* Remember to simplify each expression.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

Problem	Score
1	Points
2	10
3	10
4	10
5	10
6	10

1. Suppose $f(x)=\sqrt{x}$.
(a) What does the expression $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ represent?
(b) Find

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

for the given function $f(x)$. You must use this limit definition to receive credit.
(c) Find the equation of the tangent line of $f(x)$ at the point $(1,1)$.
2. Short answer questions:
(a) If a function $f(x)$ is continuous at $x=a$, must it be differentiable at $x=a$ as well? If not, draw a graph of a function that is continuous but not differentiable at $x=a$.
(b) True or false:

$$
f(x)=\sin (x)+\frac{x}{x+1}
$$

is continuous on \mathbb{R}.
(c) Given $f(x)=x$, find an equation of the normal line at $(3,3)$.
3. Answer the following:
(a) Given a function $f(x)$, if

$$
\lim _{x \rightarrow a} f(x)=\frac{0}{0}
$$

what global factor do you need to manifest in the numerator and denominator and why?
(b) Find

$$
\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}
$$

(c) Find

$$
\lim _{x \rightarrow 3} \frac{\frac{1}{x}-\frac{1}{3}}{x-3}
$$

4. Find the following derivatives. You are allowed to use the Differentiation Rules.
(a) $f(x)=\pi^{2}$
(b) $f(x)=x^{2} \sin x$
(c) $f(x)=\frac{\sin \left(x^{2}\right)}{2-\cos x}$
(d) $g(x)=\sqrt{\tan x^{3}}$
5. Given the implicit equation

$$
\sqrt{x y}=x+y
$$

Find $\frac{d y}{d x}$.
6. The kinetic energy of an object is $K=\frac{1}{2} m v^{2}$. If the object is accelerating at a rate of $9.8 \mathrm{~m} / \mathrm{s}$ and the mass is 30 kilograms, how fast is the kinetic energy increasing when the speed is 30 meters per second?

